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A Variational Principle for Markov Processes
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In this note, we first present a result concerning a variational principle for
general Markov processes. Then we apply it to spin particle systems to obtain
a full form of a variational principle characterizing the stationary Markov laws
of the systems. A related extreme decomposition for any stationary distribution
of such Markov systems is also given.
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1. INTRODUCTION

The motivation for the study of this paper comes from the characterization
of the equilibrium states of interacting particle systems. In ref. 1, based on
the results of refs. 3 and 4, we investigated the large deviation principle for
general spin particle systems and attempted to obtain a variational prin-
ciple characterizing the stationary Markov laws of the systems as the zeros
of the rate functions. But only a partial form of such a variational principle
was proved. The main purpose of the present paper is to give a full form
of a variational principle. Since our approach has some generality, we first
give a result in a general setting, then apply it to spin particle systems.

Let X be a Polish space, E=X Zd
equiped with the product topology and

the corresponding Borel _-algebra; 0=D(R, E ) and 0+=D([0, �), E )
be the spaces of cadlog functions from R and [0, �) to E, respectively,
both equiped with the Skorohord topology and the corresponding Borel
_-algebra. For each i # Zd and t�0, %t, i is the shift operator on 0+ defined
by

(%t, i|)s ( j)=|s+t(i+ j), | # 0+ , s�0, j # Zd
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Denote by Ms(0+) the space of probability measures on 0+ which are
invariant under each %t, i , equiped with the weak topology. Ms(0) is
defined similarly. Each Q # Ms(0+) can be regarded as in Ms(0+) in a
natural way. M e

s(0+) is the set of extreme elements of Ms(0+). Let
[P' , ' # E ] be a Markov family of probability measures on 0+ , weakly
continuous in '. The following is the main result of this section.

Theorem 1.1. Let H0 be a function from Ms(0+) to [0, �] which
is affine and lower semicontinuous (lsc). The following two statements are
equivalent:

(1) For Q # Ms(0+), H0(Q)=0 iff Q p
|=P|0

Q-a.s.;

(2) For Q # M e
s(0+), H0(Q)=0 iff Q p

|=P|0
Q-a.s.;

where Q p
| is the regular conditional probability measure of Q given the

_-algebra Fp=_[|t : t�0].

Remark 1. In particle systems, it is important to characterize those
Q # Ms(0+) which are Markovian with P' , ' # E as their regular condi-
tional probability measures. An interesting way to do this is to characterize
such Q's as the zeros of some entropy function H0 . In this way,
Theorem 1.1 tells us that it suffices to characterize such Q's in M e

s(0+). In
particular, if one obtained some large deviation estimates, H0 may be
taken to be the rate function, and (2) can be obtained in a relatively easy
way.

The proof of Theorem 1.1 concerns the ergodic decomposition for
stationary measures, from which we can obtain an extreme decomposition
for the stationary distributions of P' , ' # E. To state this result more
precisely, we used some more notations. Let m1(E ) be the space of prob-
ability measures on E, mi (E ) the set of stationary distributions of P' , ' # E
and ms(E ) the set of those + # m1(E ) which are invariant under each
%i=%0, i . For & # m1(E ), define

P&=| P' &(d')

and for Q # Ms(0+), denote by &Q its single time marginal. Then we have
the following

Theorem 1.2. Let H0 be as in Theorem 1.1 and assume that one of
the two equivalent statements (1) and (2) in Theorem 1.1 holds. Then for
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& # mi (E ) & ms(E ), P& # M e
s(0+) iff & # (mi (E ) & ms(E ))e , the set of extreme

elements in mi (E ) & ms(E ). In particular, for each & # mi (E ) & ms(E ), there
exists a probability measure ? on (mi (E ) & ms(E ))e , such that

&=|
(mi (E ) & ms(E ))e

+?(d+) (1.1)

Remark 2. It is well known that for each & # ms(E ) there is an
ergodic decomposition similar to (1.1). so (1.1) can be called the extreme
decomposition for & # mi (E ) & ms(E ).

Theorems 1.1 and 1.2 are proved in Section 2. In Section 3, we apply
Theorem 1.1 to spin particle systems to obtain a full form of a variational
principle.

2. PROOFS

To prove Theorem 1.1, we need to use the entropy function H for
time- empirical processes of the system, for the precise definition of H, we
refer to ref. 6. In ref. 2 (where we used the notation HT for H ) we have
proved the following.

Theorem 2.1. (1) For a time-stationary probability measure Q
on 0+ , H(Q)=0 iff Q p

|=P|0
Q-a.s.

(2) For & # mi (E ), P& is time-shift ergodic iff & # (mi (E ))e , the set of
extreme points of mi (E ).

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. Obviously, we only need to prove that (2)
implies (1). To this end, let Q # Ms(0+) satisfying H0(Q)=0. By Proposi-
tion 5.2.16 in ref. 5, there exists a probability measure \ on M e

s(0+), such
that

Q=|
M e

s (0)
Q$\(dQ$) (2.1)

Since H0 is affine and lsc, from Lemma 5.4.24 in ref. 5 we know that

0=H0(Q)=|
M e

s (0+)
H0(Q$) \(dQ$) (2.2)
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Hence H0(Q$)=0 \-a.s. and therefore, by (2), for \ almost all Q$,
Q$ p

| =P|0
Q$-a.s. Since H is also affine and lsc (cf. ref. 6), from (2.1) and

Theorem 2.1 we see

H(Q)=|
M e

s (0+)
H(Q$) \(dQ$)=0

this implies Q p
|=P|0

Q-a.s.
Conversely, if Q # Ms(0+) satisfying Q p

|=P|0
Q-a.s., then from

Theorem 2.1 and (2.1),

0=H(Q)=|
M e

s (0+)
H0(Q$) \(dQ$)

this implies H(Q$)=0 \-a.s. and hence, applying Theorem 2.1 once more,
we see that for \ almost all Q$, Q$ p

| =P|0
Q$-a.s. Now from (2) and (2.1)

we obtain

H0(Q)=|
M e

s (0+)
H0(Q$) \(dQ$)=0

proving the theorem. K

Proof of Theorem 1.2. Clearly, P& # M e
s(0+) implies & # (mi (E ) &

ms(E ))e . Now let & # (mi (E ) & ms(E ))e . From Theorem 1.1 and the
assumptions of Theorem 1.2 we know that H0(P&)=0. Taking Q=P& in
(2.1) and (2.2) we get

0=H0(P&)=|
M e

s (0+)
H0(Q$) \(dQ$)

Hence for \ almost all Q$, Q$ p
| =P|0

Q$-a.s. and therefore, +Q$ # mi (E ) &
ms(E ). Now the representation

&=|
M e

s (0+)
+Q$ \(dQ$) (2.3)

and the extremality of & imply &=+Q$ \-a.s. and hence P& # M e
s(0+). (1.1)

follows from (2.3). K

3. APPLICATION TO SPIN PARTICLE SYSTEMS

A spin particle system on Zd is a Feller Markov process with state
space E=[0, 1]Zd

determined by a family of spin flip rates [c(i, } ), i # Zd ],
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where for each i # Zd, c(i, } ) is a nonnegative function of E. In this paper
we assume the system to be translation invariant with finite range inter-
actions, i.e., we assume that there are a nonnegative function c0( } ) on E
and a finite subset � of Zd, such that c0(') depends on ' only through its
coordinates in �, and that \i # Zd,

c(i, ')=c0(%0, i'), ' # E

Under these assumptions, from ref. 7 we know that [c(i, } ), i # Zd ], deter-
mines a unique Feller Markov process [P' , ' # E ] on 0+ . For such a
system, in ref. 1 we obtained a partial form of a variational principle, i.e.,
there exists a nonnegative function H0 on ms(0+) which is affine and lsc,
such that for Q # Ms(0+).

If H0(Q)=0, then Q p
|=P|0

Q-a.s. Conversely, if Q p
|=P|0

Q-a.s. and
H0, 1(Q)<�, then H0(Q)=0, where H0, 1 is used for H0 with c0(')#1.

By that time, we were unable to remove the condition H0, 1(Q)<�
which is unsatisfactory. Now Theorem 1.1 allows us to do this, i.e., we will
prove the following

Theorem 3.1. Given any translation invariant spin system with
finite range interactions. For Q # Ms(0+), H0(Q)=0 iff Q p

|=P|0
Q-a.s.

Proof. From the above results and Theorem 1.1 we know that we
only need to show that if Q # M e

s(0+) satisfying Q p
|=P|0

Q-a.s., then
H0(Q)=0. To do this, we need a large deviation estimate. First, we intro-
duce some notations. For n�1 and | # 0+ , define a space-time empirical
process on 0+ as follows:

Rn, |=
1

nd+1 :
i # �n

|
n

0
$%t, i |

n dt

where �n=[i # Zd, 1�ij�n, 1� j�d ], |n is the space-time n-periodical
element of | defined by

|n
s+nt(i+nj)=|s(i), 0�s�n, t�0, i # �n , j # Zd,

with nj=(nj1 ,..., njd ). From ref. 1 we know that for Q # Ms(0+), if
Q p

|=P|0
Q-a.s., then \$>0, there is a neighborhood VQ of Q0 such that

lim sup
n � �

1
nd+1 log Q(Rn # VQ)�lim sup

n � �

1
nd+1 log sup

'
P'(Rn # VQ)

�{&H0(Q)+$
&1

$

if H0(Q)<�
if H0(Q)=�
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Furthermore, if Q # M e
s(0+), then Q(Rn # VQ) � 1 as n � �. Combining

this with the above inequality we see that for Q # M e
s(0+) with Q p

|=P|0

Q-a.s., H0(Q)=0, proving the theorem. K

Remark 3. The finite range assumption can be removed and be
replaced by a very general summable condition on c0 (cf. ref. 7, Chap. 3),
hence the conclusion of Theorem 3.1 holds for a much wider class of spin
systems. We will not give the details here.
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